Jadijelasnya pertidaksamaan linear dua variabel adalah model matematika yang menggunakan tanda tidak sama yaitu < , >, atau dan memuat satu atau dua variabel yang berpangkat 1. Contoh pertidaksamaan : x > 5, 2x + y < 4, 3p - 2q - 8 0. Pertidaksamaanlinear dua variabel adalah kalimat terbuka matematika yang memuat dua variabel, dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Tanda ketidaksamaan yang dimaksud adalah >, <, ≤, atau ≥. Sehingga bentuk pertidaksamaan linear dapat dituliskan sebagai berikut. ax + by > c ax + by < c ax + by ≥ c DefinisiPertidaksamaan Linear. Pertidaksamaan linear terbagi menjadi dua kata yaitu "pertidaksamaan" dan "linear". Pertidaksamaan adalah suatu bentuk/kalimat matematis yang memuat tanda lebih dari " > ", kurang dari " < ", lebih dari atau sama dengan " = ", dan kurang dari atau sama dengan " = ". Vay Tiền Nhanh Chỉ Cần Cmnd Nợ Xấu. Sahabat Latis, kali ini kita akan membahas tentang pertidaksamaan linear dua variabel PtLDV. Dalam hal ini, kita diminta untuk menentukan nilai minimum dan maksimum, serta penyelesaian kontekstual yang terkait dengan pertidaksamaan linear dua yang akan kita pelajari pada materi kali ini? Terdapat beberapa hal yang harus Sahabat Latis ketahui tentang pertidaksamaan linear dua variabel. Di antaranya adalah mengetahui pengertian pertidaksamaan linear dua variabel, menyusun pertidaksamaan linear dua variabel ke daerah penyelesaiannya, metode penyelasaian pertidaksamaan linear dua variabel, dan membuat model matematika berdasarkan permasalahannya. A. Apa Itu Pertidaksamaan Linear Dua Variabel? Pertidaksamaan , ≤, ≥adalah kalimat terbuka yang memiliki bentuk seperti ax+by R c Keterangan a, b, dan c adalah konstanta x dan y merupakan variabel R merupakan perwakilan dari pertidaksamaan ,≤,≥ Grafik pertidaksamaan linear dua variabel PtLDV merupakan himpunan semua titik x,y pada sistem koordinat Cartesius yang memenuhi PtLDV. Himpunan penyelesaian pada grafik PtLDV digambarkan sebagai daerah yang diarsir. Menentukan Persamaan Garis Terdapat beberapa cara untuk menentukan persamaan garis yaitu persamaan segmen garis, persamaan garis melalui titik 〖x〗_1,y_1 dengan gradien m, dan persamaan garis melalui titik 〖x〗_1,y_1 dan 〖x〗_2,y_2. Persamaan Segmen Garis Source amyariePersamaan garis yang melalui titik a,0 dan 0,b adalah x/a + y/b=1 atau bx+ay=ab. Persamaan Garis melalui Titik 〖x〗_1,y_1 dengan Gradien m Persamaan garis yang melalui titik 〖x〗_1,y_1 dan gradien m adalah y- y_1=m〖x- x〗_1 . Persamaan Garis melalui Titik 〖x〗_1,y_1 dan 〖x〗_2,y_2 Persamaan Garis melalui Titik 〖x〗_1,y_1 dan 〖x〗_2,y_2 adalah x/x_2 + x_1/x_1 = y/y_2 + y_1/y_1 atau y- y_1=〖y_2 - y〗_1/〖x_2 - x〗_1 〖x- x〗_1 , dengan x_1 ≠ x_2. Menentukan Titik Koordinat Jika titik koordinat mudah diukur, maka Jika y = 0 yang memotong sumbu x pada grafik bx+ay=ab, maka bx+a×0=ab ⟺x=a. Koordinat titik potong grafik tersebut dengan sumbu x adalah a,0. Jika x = 0 yang memotong sumbu x pada grafik bx+ay=ab, maka bx+a×0=ab ⟺x=a. Koordinat titik potong grafik tersebut dengan sumbu y adalah 0,b.B. Metode Penyelesaian Pertidaksamaan Linear Dua Variabel Terdapat dua cara menyelesaikan pertidaksamaan linear dua variabel. Di antaranya adalah metode substitusi dan metode koefisien y. 1. Metode Substitusi Metode substitusi merupakan metode yang digunakan untuk mengganti titik 〖x〗_1,y_1 yang berada di luar garis bx+ay=ab. Himpunan penyelesaiannya adalah daerah yang memuat titik 〖x〗_1,y_1 jika 〖bx〗_1+ 〖ay〗_1-ab >0. Sedangkan daerah yang memuat titik 〖x〗_1,y_1 apabila 〖bx〗_1+ 〖ay〗_1-ab 0 dimana bx+ay≥ab maka himpunan penyelesaiannya berada di atas garis bx+ay= amyarieApabila a>0 dimana bx+ay≤ab, maka himpunan penyelesainnya berada di bawah garis bx+ay=ab. Source amyarieApabila a maka garis dilukis secara putus-putus. Menentukan sebarang titik x,y lalu memasukkannya ke dalam sebuah pertidaksamaan. Daerah penyelesaian selalu bernilai benar dan berlaku sebaliknya. Mengarsir daerah yang penuh karena merupakan himpunan penyelesaian. Contoh Soal Untuk lebih jelasnya, mari kita pelajari contoh soal berikut ini. Ditanya Tentukan himpunan penyelesaian pertidaksamaan linear dari 3x+2y≥12! Dijawab Langkah 1 Tentukan garis pembatas yaitu 3x + 2y = 12. Langkah 2 Tentukan titik potong terhadap sumbu X dan sumbu Y. Titik potong sumbu X adalah jika y = 0. Sehingga diperoleh 3x + 20 = 12 ⇔ 3x + 0 = 12 ⇔ 3x = 12 ⇔ x = 4 Jadi, titik potong terhadap sumbu X adalah 4,0. Titik potong sumbu Y adalah jika x = 0. Sehingga diperoleh 30 + 2y = 12 ⇔ 0 + 2y = 12 ⇔ 2y = 12 ⇔ y = 6 Jadi, titik potong terhadap sumbu Y adalah 0,6. Langkah 3 Menghubungkan kedua titik potong tersebut dengan garis lurus. Langkah 4 Mengambil sembarang titik, misalnya 0, 0, lalu masukkan ke pertidaksamaan 30 + 20 ≥ 12 tidak memenuhi, berarti daerah tempat titik 0, 0 bukanlah merupakan daerah himpunan penyelesaian. Langkah 5 Mengarsir daerah yang memenuhi. Keynote Tanda pertidaksamaan ≥ mengisyaratkan daerah penyelesaian yang berada di sebelah kanan atas garis. Tanda pertidaksamaan ≤ mengisyaratkan daerah penyelesaian yang berada di sebelah kiri bawah juga Sahabat Latis, udah mulai paham kan dengan materi Pertidaksamaan Linear Dua Variabel? Supaya kamu makin paham dengan materi lainnya, bisa jawab PR dan tugas di sekolah dengan mudah dan prestasi kamu meningkat tajam, kamu bisa coba ikutan les privat Latisprivat lho! Gurunya berprestasi dan biayanya juga hemat. Bisa online dan tatap muka juga. Fleksibel kan? Untuk info lebih lanjut, kamu bisa hubungi Latisprivat di line chat 085810779967. Sampai ketemu di kelas! Referensi Modul Pembelajaran Pertidaksamaan Linear Dua Variabel 2020 oleh Leni Fauziyah Cara mencari penyelesaian pertidaksamaan linear dua variabel dan sistem pertidaksamaan linear dua variabel dengan mudah akan dibahas pada artikel ini dari contoh nyata di kehidupan sehari-hari dan lingkungan sekitar. — Rogu ditugasi ibunya mengantar barang pesanan ke tetangganya. Ada dua jenis barang pesanan yaitu baju dan celana. Agar lebih mudah, Rogu mengantarnya menggunakan motor. Namun Rogu menemui masalah nih, Squad. Ia cuma bisa membawa barang-barang tersebut dalam jumlah terbatas! Bantu Rogu mencari jumlah maksimum barang yang dapat dibawa yuk agar motornya tidak kelebihan beban. Motor Rogu hanya bisa membawa beban kurang dari 24 kg. Satu karung baju mempunyai berat sebesar 3 kg dan satu karung celana mempunyai berat sebesar 2 kg. Berapa karung baju dan celana yang dapat ia bawa? Nah, dari persoalan ini bisa dibuat nih pertidaksamaan linear dua variabel. Mengapa pertidaksamaan? Kata kunci pertidaksamaan di antaranya adalah kurang atau lebih dari. Dua variabel berarti nilai yang tidak diketahui ada dua yaitu banyaknya karung baju dan celana. Berat total kurang dari 24 kg. Padahal berat total itu berat baju ditambah berat celana. Sementara, berat baju dapat dihitung dari berat satu karung baju dikali jumlah karung baju. Begitu pula berat celana. Misalnya jumlah karung baju adalah x dan berat karung celana adalah y maka pertidaksamaannya jadi 3x + 2y . Maka daerahnya adalah Catatan jumlah barang tidak mungkin bernilai negatif sehingga daerah yang diberi tanda silang x dan y negatif bukan daerah penyelesaian Jumlah karung baju dan celana yang bisa di bawa Rogu berapa nih jadinya? Lihat saja titik-titik dalam daerah penyelesaian. Contohnya adalah titik x = 5 dan y = 1. Maka Rogu bisa membawa 5 karung baju 5 x 3 kg = 15 kg dan 1 karung celana 1 x 2 kg = 2 kg. Totalnya adalah 17 kg. Wah cukup berat juga ya. Tapi tetap kurang dari 24 kg kan? Eh, gimana kalau ternyata agar lebih cepat, ibu Rogu mensyaratkan banyaknya karung yang dibawa Rogu minimum harus 10 karung? Masih banyak karung yang Rogu antarkan lagi nih soalnya. Maka selain pertidaksamaan 3x + 2y < 24, harus kita gabungkan juga pertidaksamaan lain. Banyaknya karung baju x ditambah banyaknya karung celana y minimal harus 10 karung. Jadi pertidaksamaan yang digabungkan dengan 3x + 2y < 24 adalah x + y ≥ 10 Ilustrasi permasalahan Rogu sumber Baca juga Apakah Fungsi Invers Itu? Nah, gabungan dari beberapa pertidaksamaan linear dua variabel dinamakan sistem pertidaksamaan linear dua variabel. Pada prinsipnya, cara pemecahannya sama kaok yaitu dengan menggambar grafik. Tinggal cari deh daerah penyelesaian kedua pertidaksamaan di atas. Dengan menerapkan langkah-langkah di atas maka didapat gambar grafik yaitu Salah satu titik penyelesaian tersebut adalah x = 1 dan y = 10. Jadi Rogu bisa nih membawa 1 karung baju dan 10 karung celana. Total karung yang ia bawa adalah 11 karung lebih dari 10 karung dan berat karung semuanya adalah 1 x 3 kg + 10 x 2 kg atau 23 kg. Tetap kurang dari 24 kg kan Squad? Itu tuh manfaatnya bisa menyelesaikan sistem pertidaksamaan linear dua variabel. Masalah di hidup kita bisa diselesaikan lebih mudah, Squad! Bila kamu butuh tambahan video materi atau pembahasan soal, langsung aja daftar di ruangbelajar. Dijamin deh jadi makin jago! Tunggu apa lagi, Squad? Sumber Referensi Kenginan M. 2018 Buku Teks Pendamping Matematika untuk Siswa SMA-MA/SMK-MAK Kelas X. BandungSrikandi Empat Widya Utama Diperbarui 21 Januari 2021 Dalam bahasan kali ini, akan dibahas mengenai sistem pertidaksamaan linear dua variabel. Sistem pertidaksamaan linear dua variabel merupakan bagian dari penyelesaian masalah program linear. Sehingga sangat penting untuk memahami materi ini terlebih dahulu sebelum mempelajari program linear. Sistem pertidaksamaan linear dua variabel tentu sangat berbeda dengan sistem persamaan linear dua variabel. Selain, perbedaan tanda hubung yang dimiliki oleh keduanya. Bentuk penyelesaian dan metode penyelesaiannya juga tidak sama. Nah, untuk lebih jelasnya mengenai sistem pertidaksamaan linear simaklah ulasan berikut. Pertidaksamaan Linear Dua Variabel Sebelum membahas mengenai sistem pertidaksamaan linear dua variabel, terlebih dahulu kita mempelajari mengenai pertidaksamaan linear dua variabel. Pertidaksamaan linear dua variabel adalah kalimat terbuka matematika yang memuat dua variabel, dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Tanda ketidaksamaan yang dimaksud adalah >, c ax + by 6 4x - y dengan kata lain tanda ketidaksamaan tanpa sama dengan Uji titik 0, 0 30 + 0 < 9 0 < 9 benar Karena pernyataannya menjadi benar, maka 0, 0 termasuk penyelesaianya. Sehingga daerah yang memuat 0, 0 merupakan penyelesaianya. Dalam hal ini yang daerah bersih merupakan penyelesaian dari pertidaksamaan. b. 4x - 3y ≥ 24 4x - 3y = 24 Grafik Penyelesaian Uji titik 0, 0 40 - 30 ≥ 24 0 ≥ 24 salah Karena pernyataanya menjadi salah, maka 0, 0 bukan termasuk penyelesaianya. Sehingga daerah penyelesainnya tidak memuat 0, 0 dan daerah bersihnya daerah penyelesaian berada di bawah garis. Untuk melakukan uji titik, tidak harus selalu menggunakkan titik 0, 0. Titik mana saja bisa digunakan asalkan titik tersebut tidak dilalui oleh garis persamaan. Pada dua contoh di atas, dasar pertimbangan menggunakan titik 0, 0 adalah selain tidak dilalui oleh garis serta mempermudah perhitungan. Sistem Pertidaksamaan Linear Dua Variabel Sistem pertidakasamaan linear dua variabel adalah sistem pertidaksamaan yang melibatkan dua atau lebih pertidaksamaan linear dua variabel. Daerah penyelesaian dari sistem pertidaksamaan linear dua variabel merupakan daerah yang memenuhi semua pertidaksamaan yang ada dalam sistem. Untuk lebih jelasnya perhatikan contoh berikut Contoh 2 Tentukan daerah penyelesaian dari sistem pertidaksamaan dua variabel berikut! x + y ≤ 9 6x + 11 y ≤ 66 x ≥ 0 y ≥ 0 Penyelesaian x + y ≤ 9 x + y = 9 6x + 11 y ≤ 66 6x + 11 y = 66 x ≥ 0, gambar garisnya berimpit dengan sumbu y dengan daerah penyelesaian di kanan sumbu y y ≥ 0, gambar garisnya berimpit dengan sumbu x dengan daerah penyelesaian di atas sumbu x Grafik Penyelesaian Uji titik 0, 0 0 + 0 ≤ 9 0 ≤ 9 benar Uji titik 0, 0 60 + 110 ≤ 66 0 ≤ 66 benar Contoh 3 Tentukan daerah penyelesaian dari sistem pertidaksamaan dua variabel berikut! x + y ≤ 5 4x + 6 y ≤ 24 x ≥ 1 y ≥ 2 Penyelesaian x + y ≤ 5 x + y = 5 4x + 6 y ≤ 24 4x + 6 y = 24 x ≥ 1, gambar garisnya melalui x = 1 dan sejajar sumbu y dengan daerah penyelesaian di kanan garis y ≥ 2, gambar garisnya melalui y = 2 dan sejajar sumbu x dengan daerah penyelesaian di atas garis Grafik Penyelesaian Uji titik 0, 0 0 + 0 ≤ 9 0 ≤ 9 benar Uji titik 0, 0 60 + 110 ≤ 66 0 ≤ 66 benar Demikianlah mengenai Sistem Pertidaksamaan Linear Dua Variabel, semoga dapat dipahami dan bermanfaat.

sistem pertidaksamaan linear dua variabel yang memenuhi grafik berikut adalah